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Abstract— The continuous progression of neurological
diseases are often categorized into conditions according
to their severity. To relate the severity to changes in brain
morphometry, there is a growing interest in replacing these
categories with a continuous severity scale that longitudi-
nal MRIs are mapped onto via deep learning algorithms.
However, existing methods based on supervised learning
require large numbers of samples and those that do not,
such as self-supervised models, fail to clearly separate the
disease effect from normal aging. Here, we propose to ex-
plicitly disentangle those two factors via weak-supervision.
In other words, training is based on longitudinal MRIs being
labelled either normal or diseased so that the training data
can be augmented with samples from disease categories
that are not of primary interest to the analysis. We do so
by encouraging trajectories of controls to be fully encoded
by the direction associated with brain aging. Furthermore,
an orthogonal direction linked to disease severity captures
the residual component from normal aging in the diseased
cohort. Hence, the proposed method quantifies disease
severity and its progression speed in individuals without
knowing their condition. We apply the proposed method on
data from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI, N=632). We then show that the model properly disen-
tangled normal aging from the severity of cognitive impair-
ment by plotting the resulting disentangled factors of each
subject and generating simulated MRIs for a given chrono-
logical age and condition. Moreover, our representation
obtains higher balanced accuracy when used for two down-
stream classification tasks compared to other pre-training
approaches. The code for our weak-supervised approach
is available at https://github.com/ouyangjiahong/
longitudinal-direction-disentangle.

Index Terms— Weakly supervised learning, Disentangle-
ment, Longitudinal MRI, Cognitive Impairment.
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I. INTRODUCTION

Individuals suffering from neurological diseases (such as
cognitive impairment) are often categorized into conditions
(such as stable Mild Cognitive Impairment (sMCI), pro-
gressive MCI (pMCI), and Alzheimer’s disease (AD) [1]).
Accurately characterizing the effect of each condition on the
human brain can contribute to a better understanding of the
underlying neurological mechanisms and thus facilitate treat-
ments in clinical settings. To do so, longitudinal MRI studies
recruit normal controls and individuals of each condition, scan
them repeatedly over time, and analyze their morphometric
trajectories [2]–[4].

State-of-the-art analysis is often based on supervised learn-
ing of deep neural networks [4], [6]–[10] directly classifying
longitudinal MRIs into normal controls and individuals asso-
ciated with conditions of the disease (see Fig. 1(a)). However,
supervised learning generally requires a large number of train-
ing samples for each condition, which are generally difficult
to attain in longitudinal MRI studies [11]. Moreover, using
exclusive labels to encode the classes ignores the underlying
continuum across conditions regarding disease severity [9].

To reduce the need for large labelled training datasets,
self-supervised learning models [12]–[20] derive a compact
representation by mapping longitudinal MRIs into a latent
space using label-independent information [5], [21]. One can
then combine these self-supervised approaches with factor
disentanglement [22]–[24] to extract directions in the latent
space related to interpretable semantic information about the
data. Common approaches for disentanglement (e.g., β-VAE
[22], β-TCVAE [23], FactorVAE [24]) were created for cross-
sectional data, so the disentangled factors generally do not
relate to time-related information (e.g., aging and disease pro-
gression). Existing works on time-series data, like audio and
video [25]–[27], attempted to disentangle the time-invariant
content (e.g., identity) from time-variant content (e.g., human
body pose). However, these models were not designed to en-
code changes captured by longitudinal neuroimaging data, e.g.,
aging and disease progression. To overcome this limitation, we
proposed Longitudinal Self-Supervised Learning (LSSL) [5]
(Fig. 1(c)), which uses the order of visits to ‘supervise’ the
disentanglement of brain aging encoded as a linear direction
in the latent space. Our next model (referred to as LNE [28])
then relaxed the constraint of a single linear direction by
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Fig. 1. Latent space of fully-supervised methods, weakly-supervised methods (Ours), and self-supervised methods ((LSSL [5]). Arrows represent
the change within a subject between consecutive visits. Cyan arrows are of normal controls while arrows in yellow, purple, and brown are of
subjects diagnosed with a condition. The background color represents the label used in the fully and weakly supervised setting. Note, while weakly-
supervised learning (b) trains on subjects of all conditions (represented by arrows with four different colors), it only uses binary weak label to
distinguish controls (cyan background) from diseased subjects (pink backgrounds).

deriving a non-linear smooth trajectory field. However, due to
the absence of label information, both LSSL and LNE confined
the disentanglement to one time-varying factor. Thus, these
models assume that the effects of normal aging and disease
progression lie on the same continuum so that they are encoded
by the same direction in the latent space.

However, recent studies have shown that morphological
brain changes associated with AD are different from normal
aging [29]. To unravel these differences within a continuous
space, we propose here a weakly supervised approach (Fig.
1(b)) that categorizes subjects as either normal control or dis-
eased (i.e., belonging to one of the conditions). The direction
associated with brain age is disentangled with respect to the
control cohort by encouraging their aging trajectories to be
fully encoded by that direction, while the direction linked to
disease severity captures the residual after extracting ‘normal
aging‘ from the trajectories of diseased subjects. As normal
controls are impartial to the severity, severity stages between
individuals can be inferred solely from subject-specific pro-
gression without knowledge of their condition. By doing so,
our model (similar to self-supervised approaches) can train on
samples from conditions not of interest (e.g., AD subjects can
be used for training when the primary analysis is on sMCI
and pMCI).

We evaluated our method on disentangling brain age from
cognitive impairment based on 632 longitudinal T1-weighted
MRIs (ranging from 2 to 6 scans per participant) collected
by the Alzheimer’s Disease Neuroimaging Initiative (ADNI).
The data set contained 185 NC, 193 sMCIs, 135 pMCIs,
and 119 AD subjects. The weak label divides subjects into
being normal controls or cognitively impaired (which was the
collection of sMCI, pMCI, and AD). After training the model,
plotting the disentangled factors of each sample in the latent
space and simulating MRIs for any given chronological age
and condition illustrates that the model properly disentangled
normal aging from the severity of cognitive impairment.
Note, the estimation of disease severity and disease progres-
sion speed cannot be produced by existing self-supervised
or weakly-supervised methods. Moreover, compared to these
alternative pre-training methods, the latent representation pre-
trained by our model obtains higher balanced accuracy on two

downstream tasks: distinguishing sMCI from pMCI, and pre-
dicting the presence of amyloid plaques on positron emission
tomography (PET).

II. METHOD

We derive our approach by first defining the latent space of
‘trajectory vectors’ where each vector represents the changes
between two T1-weighted MRIs of a longitudinal sequence
from the same subject (Section II-A). We then formalize the
problem statement for disentangling the vectors into the effects
associated with disease severity versus brain age (Section
II-B). Finally, we encode this model via a loss function
(Section II-C) and describe in Section II-D how to visualize the
effect associated with a disentangled direction by generating
synthetic brain MRIs. Note, for simplicity, we now drop the
‘T1-weighted‘ from MRI.

A. Deriving Trajectory Vectors
As shown in Fig. 2, our model consists of an autoencoding

structure that maps each MRI (or visit) to a point in the latent
space. In doing so, each subject is encoded in that space by a
trajectory (light blue for normal controls and pink for diseased
subjects) across multiple visits (≥ 2). To reduce the problem of
having an insufficient number of training samples, we do not
directly train the model on the trajectories but instead compute
vectors from all possible visit pairs, where the first visit in each
pair precedes the second one. Note, the training weighs each
MRI pair equally so that the model relies more on subjects
with more observations.

We formalize a similar construction of the latent space as
in [5]. Let X :=

{
x1, . . . , xN

}
be the collection of all MRIs

and S be the set of subject-specific MRI pairs (xr, xs) with
xr being scanned before xs. As shown in Fig. 2, the encoder
F maps an MRI to an M -dimensional latent space via z :=
F (x) ∈ RM . An MRI pair (xr, xs) is then mapped to (zr :=
F (xr), zs := F (xs)). The normalized vector is formulated
as ∆z(r,s) := (zs − zr)/∆t(r,s), where ∆t(r,s) is the time
interval between the two MRIs. For convenience, we denote
∆z(r,s) as ∆z, and ∆t(r,s) as ∆t from now on. From the latent
representations, the decoder H then reconstructs the input
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Fig. 2. Overview of our method: an encoder projects a pair of MRIs (xr, xs) into the latent space resulting in a trajectory vector with (light) blue
for normal controls and pink (or red) for diseased subjects. We encourage the direction of this vector to be consistent with the age direction τa
(blue) for normal controls and the residual of that direction to be consistent with the disease severity direction τd (red) for diseased individuals.

MRIs, i.e., x̃r := H(zr), x̃s := H(zs). The reconstruction
loss is used to guarantee the latent representation encodes
all morphological information in the MRIs, which can be
formulated as:

Lrecon := E(xr,xs)∼S
(
‖ xr − x̃r ‖22 + ‖ xs − x̃s ‖22

)
. (1)

where E(xr,xs)∼S denotes the expected value with respect to
all MRI pairs S and ‖ · ‖2 represents the Euclidean norm.

B. Problem Statement
Our goal is to find two directions in the latent space, such

that moving along one direction corresponds to normal aging
(i.e., expected change induced by getting older) while moving
along the other relates to disease progression. The remaining
M−2 dimensions then encode other time-independent factors
(e.g., sex, race) that are not of interest to this longitudinal
study. To achieve such disentanglement, we first introduce the
weak binary label y as being 0 for normal controls or 1 for
diseased subjects. Note, a disease (such as cognitive impair-
ment) can encompass several conditions (e.g., sMCI, pMCI,
or AD), where each condition is associated with a certain level
of disease severity. To make this problem tractable, we make
the following relaxing assumptions:

Completeness. In line with many longitudinal studies of
neurological diseases [30], [31], we assume that (brain) age
and the severity of the disease are the only time-dependent
factors. Thus, intra-subject changes captured by longitudinal
brain MRIs can be fully explained by normal aging and disease
progression, with disease progression only relevant to diseased
adults (such as in the analysis of AD by ADNI [32], [33]).

Independence. We assume aging and disease progression
are two independent factors, so that disease progression can
be explicitly disentangled from the normal aging effect by
modeling the changes along two orthogonal directions in the
latent space. In the case of AD, this assumption is supported by
prior studies that AD can not be simply regarded as accelerated
aging [29], [34].

Homogeneity. While the two cohorts may not share the
same distribution in age, we assume that their distribution over

the speed of normal aging is the same. This assumption is
needed as some conditions, such as AD, are associated with
accelerated aging [29]. Thus, we consider aging speeds faster
than normal as part of the disease as also done in [30], [35].

As shown in Fig. 2, we denote the brain age direction
as τa and the disease severity direction as τd. These two
directions are designed to be unit vectors and to be strictly
orthogonal (inline with independence assumption), so that
the high-dimensional representations can be projected into a
2D space spanned by these two orthogonal directions (Fig.
2). Given the latent representation z of an MRI, we define
the projection value of z on the disease severity direction
as the estimated disease severity associated with that MRI,
i.e., ϕd := zT τd. The projection on the age direction, i.e.,
ϕa := zT τa, is the estimated brain age. Now let ∆z be
associated with an MRI pair with ∆ϕa being the estimated
aging speed between visits, then the component on the age
direction can be computed by projecting ∆z on τa, i.e.,
∆za := (∆zT τa)τa = ∆ϕaτa. Similarly, let ∆ϕd be the
estimated progression speed capturing the changes in disease
severity between visits, then the component on the disease
severity direction is ∆zd := (∆zT τd)τd = ∆ϕdτd.

The completeness assumption suggests that ∆z = ∆za +
∆zd, i.e., the longitudinal changes are the combination be-
tween normal aging and the disease progression. For normal
controls ideally we have ∆z = ∆za. An exact disentanglement
would thus satisfy

∆z −∆za − y ·∆zd = 0 (2)

for each subject, while the distribution of aging speed ∆ϕa is
the same for the two cohorts (according to the homogeneity
assumption).

C. Loss Functions
We now design an objective function, whose minimum

achieves the condition of disentanglement (i.e., Eq. (2)). Sim-
ply defining this function by the L2-norm over the left-hand
side of Eq. (2) will lead to a non-informative solution, which
is shrinking the magnitude of z towards zero. To avoid this
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scenario, we now derive a cost function that instead minimizes
the cosine loss between vectors [5].

For normal controls, τa should be parallel to the trajectory
vector ∆z. To impose this constraint in the model, we define
the first term of the cost function to be a cosine loss favoring
zero-angle between the two vectors, i.e.,

Lda := E(xr,xs)∼S,y=0

(
− cos(θ〈∆z,τa〉)

)
. (3)

Note, S, y = 0 denotes the MRI pairs of normal controls so
that, unlike in our prior work [5], the expected value is only
over the normal controls. In [5], the constraint applied to both
cohorts, which violates our homogeneity assumption as the
function does not distinguish between normal and accelerated
aging.

Moreover, we add a loss term based on the Kullback–Leibler
(KL) divergence to explicitly impose the homogeneity assump-
tion of having ‘identical distribution of aging speed’ for the
two cohorts. More specifically, assuming the distribution of the
aging speed is captured by the normal distribution N (µ0, σ0)
for normal controls and N (µ1, σ1) for the diseased cohort,
then the KL loss is defined as:

Lkl := log(
σ1

σ0
) + (

σ2
0 + (µ0 − µ1)2

2σ2
1

)− 1

2
. (4)

To enforce the completeness assumption, we propose a
penalty loss term based on the ratio of the norm of ∆ϕd
between the normal controls and diseased cohort:

Lpen :=
Ey=0‖∆ϕd‖2
Ey=1‖∆ϕd‖2

. (5)

Note, the minimum of that ratio is achieved when
Ey=0‖∆ϕd‖2 = 0, i.e., normal controls have no disease
component.

Finally, for diseased subjects, the residual of the age direc-
tion (i.e., ∆z−∆za) should be parallel to the disease severity
direction τd. We model this assumption via

Ldd := E(xr,xs)∼S,y=1

(
− cos(θ〈∆z−∆za,τd〉)

)
. (6)

In doing so, the proposed method can be applied to scenarios
where diseases can be either relevant or irrelevant to brain age.

The complete objective function, whose minimum fulfills
the requirement of Eq. (2), is then the weighted combination
of prior loss functions, i.e.,

L := λreconLrecon +λaLda +λdLdd +λpenLpen +Lkl, (7)

where λrecon, λa, λd, and λpen are hyperparameters that
balance the losses.

D. Visualizing the Effect of Normal Aging and Disease

With the disentangled directions, we can visualize the effect
of normal aging by reconstructing the average brain MRI of
the control cohort, whose z varies along the age direction.
The disease effect can be visualized by varying z along the
disease severity direction to reconstruct diseased MRIs. Let
{zi|i = 1, ..., NC} be the latent representations of NC normal
controls, we generate a simulated MRI of controls x̂C at

a given brain age ϕ̂a by reconstructing the following latent
representation

ẑC := ϕ̂aτa +
1

NC

NC∑
i=1

[zi − ϕiaτa], (8)

where the first term corresponds to the component along
the age direction and the second term captures the factors
independent from brain age, i.e., the group average of the
components orthogonal to τa.

Assuming the disease consists of K conditions of various
severity levels, the simulated brain MRI at age ϕ̂a for the kth

condition (with NDk subjects) can be reconstructed from:

ẑDk =ϕ̂aτa +

 1

NDk

NDk∑
i=1

ϕid

 τd

+
1

NDk

NDk∑
i=1

(
zi − ϕiaτa − ϕidτd

)
,

(9)

where the first term is the aging component, the second term
corresponds to disease severity, and the last term captures the
factors independent from brain age and disease.

III. EXPERIMENTAL SETUP

A. Data
We evaluated our method on 632 subjects’ longitudinal T1w

MRIs (consisting of 2389 individual MRIs that successfully
were pre-processed) from ADNI-1. Each subject had at least
two (and up to 6) T1w MRI scans (Table I)), which were
acquired via a 1.5T 3D MPRAGE sequence defined across
GE, Siemens, and Phillips scanners (TR/TE = 2300–3000/3–4
ms; flip angle = 8–9°; section thickness = 1.2 mm; 256
reconstructed axial sections) [36]. According to ADNI, elec-
tronic protocols were supplied to each MRI scanner vendor
to minimize inconsistencies expected to arise from building
the protocol manually on individual scanners and the imaging
protocol remained the same for each individual during the
study period of ADNI-1 [37].

The data set consists of 185 normal controls (age: 75.57 ±
5.06 years), 119 subjects with AD (age: 75.17 ± 7.57 years),
135 subjects diagnosed with pMCI (age: 75.91 ± 5.35 years),
and 193 subjects diagnosed with sMCI (age: 75.63 ± 6.62
years). pMCI is defined as those MCI subjects that progressed
into AD within 3 years after baseline, whereas sMCI did not
[38]. There was no significant age difference among sMCI,
pMCI and AD individuals (p >0.3, two-sample t-test).

We assigned a binary weak label to each individual with
y = 0 for normal controls and y = 1 for cognitively impaired
individuals, which include sMCI, pMCI, or AD subjects. There
was no significant age difference (p=0.62; two-sample t-test)
between controls (age: 75.57 ± 5.06 years) and the cognitive
impaired group (75.59 ± 6.42 years).

In line with our prior studies [5], [10], [28], all longitudinal
MRIs were preprocessed by a pipeline composed of denoising,
bias field correction, skull striping, affine registration to a
template, re-scaling to a 64× 64× 64 volume, and transform-
ing image intensities to z-scores. At the sacrifice of image
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Fig. 3. Network structure of the proposed method. Blue blocks correspond to the encoder that reduces an input MRI to a 1024 dimensional latent
representation z, from which the decoder (green) reconstructs the MRI. τa and τd are constructed as the output of a dummy network. The last
dimension of τd enforces the orthogonality constraint τa ⊥ τd. The relationship between variables is further illustrated in Fig. 2.

TABLE I
NUMBER OF VISITS FOR SUBJECTS OF FOUR DIAGNOSIS COHORTS.

Diagnosis 2 visits 3 visits 4 visits 5 visits 6 visits
NC 28 32 43 60 22

sMCI 44 49 44 46 10
pMCI 17 31 28 45 14
AD 27 30 61 1 0

resolution, the downsampling enables the design of a compact
encoder model with a relatively small number of network
parameters, which can effectively boost training speed. Finally,
we constructed 2668 MRI pairs by the criteria that each pair
was from the same subject and scans were at least one year
apart (i.e., contain sufficient morphological changes).

B. Implementation Details
We augmented the training set as we did in [28], i.e., by ap-

plying the same random shift (within 4 pixels), rotation (within
2 degrees) and random flipping of brain hemispheres on each
pair of MRIs. By doing so, we preserve the intra-subject
changes that our model aims to learn (i.e., aging and disease
effects). This augmentation strategy also allowed for direct
comparison with our previous works [5], [28]. Regarding the
architecture, our model was based on an Encoder-Decoder
structure [39]. Specifically, let EBk denote an Encoder Block,
i.e. a stack of Convolution layer (k channels, kernel size of
3 × 3 × 3) followed by a BatchNorm, LeakyReLU (with
slope of 0.2) and a MaxPool layer (kernel size of 2), and
DBk as Decoder Block, i.e., a stack of Convolution layer (k
channels, kernel size of 3× 3× 3) followed by a BatchNorm,
LeakyReLU (with slope of 0.2) and a MaxPool layer (kernel
size of 2). Then the architecture of our model was a EB16-
EB32-EB64-EB16-DB64-DB32-DB16-DB16 followed by a con-
volution layer for the final reconstruction. As shown in Fig.
3, the encoder resulted in a 1024-dimensional representation
space. We estimate τa and τd by regarding them as the output
of two dummy layers. Specifically, a dummy constant scalar
of 1 was fed to a dense layer (top orange block) producing
the 1024 dimensional vector τa, where we denote the first
1023 dimensions as τ ′a and the last dimension as τ ′′a . The

constant was also fed to a separate dense layer (bottom orange
block) producing another 1023 dimensional vector τ ′d, which
was then concatenated with − τ

′
a
>τ ′

d

τ ′′
a

to produce the final 1024
dimensional τd. By design, τd was orthogonal to τa, both of
which were then turned into unit vectors via normalization.

Due to the complexity of the objective function, and inspired
by the idea of curriculum learning [40], [41], we designed a
coarse-to-fine step-wise training strategy that gradually added
loss terms to the objective function. On all training subjects,
we first optimized over λreconLrecon + λaLda so that disease
progression was modelled as an accelerated aging effect.
We then added the loss function associated with the disease
severity direction (i.e., λreconLrecon+λaLda+λdLdd) to dis-
entangle the disease progression from normal aging. Finally,
the disentanglement was further improved by minimizing the
entire object function as specified in Eq. (7) In line with
LSSL [5], we set λrecon and λa to be equal as the number
of MRIs (N=2389) is about the same as the number of MRI
pairs (N=2668). We then set the weights for the remaining
regularization terms to be half of λrecon so that the loss values
of all terms are of equal scale. The networks were trained for
25 epochs by the Adam optimizer [42] with learning rate of
5 × 10−4 and weight decay of 10−5 for each of the three
phases.

C. Evaluation

The approach was evaluated in two steps. We first ensured
that brain aging was accurately disentangled from disease
severity. Next, we assessed the use of this disentanglement
for downstream tasks by comparing its accuracy to those of
alternative approaches on several clinically-relevant tasks.

Quality of disentanglement in the latent space: A
successful disentanglement would result in the direction τd
stratifying the severity level of cognitive impairment within the
diseased individuals. To assess the quality of the stratification,
we first trained the model using the weak labels of all subjects
and then examined whether the resulting representations could
differentiate sMCI, pMCI, and AD within the diseased cohort.
To do so, we selected trajectory vectors ∆z associated with
adjacent visits of each subject and examined the differences
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in ∆ϕa (aging speed) and ∆ϕd (disease progression speed)
across cohorts by two-tailed two-sample t-tests (p < 0.05
was viewed as significant). We followed up this quantitative
analysis by projecting the trajectory vector ∆z as a dot in the
2D space spanned by the age direction τa and disease severity
direction τd. We color-coded the dots by cohorts to visualize
their differences in the ∆zd component.

In a second experiment, we inspected the correlation be-
tween the estimated progression speed and the changing speed
of Alzheimer’s Disease Assessment Scale–Cognitive Subscale
(ADAS-Cog). ADAS-Cog quantifies the severity of cognitive
impairment by having subjects complete 11 tasks that assess
the cognitive domains of memory, language, and praxis. The
outcome of this assessment is a single value ranging from 0
to 70 with higher scores suggesting worse cognition [43]. In
line with the computation of ∆ϕd, we defined the changing
speed of ADAS-cog as the difference in ADAS-cog between
the two visits divided by the time interval. Finally, the above
two experiments were repeated on ϕd; i.e, we tested the
difference in ϕd across the three conditions and correlated
ϕd with ADAS-Cog.

Evaluating Quality of Representations for Two Down-
stream Tasks: Distinguishing MCI subjects who will eventu-
ally develop AD (pMCI) from stable MCI subjects (sMCI)
within a short time frame (3 years) is helpful to identify
patients who may need more medical care or may be appro-
priate to include in clinical trials of AD disease modifying
therapies. To highlight the potential clinical value of the
proposed method, the first downstream task was on sMCI vs.
pMCI classification.

For the second downstream task, we used the learned
representations to predict brain amyloid status (i.e., positive
vs. negative status) [44]. The presence of brain β-amyloid
(Aβ) plaques is a defining feature of Alzheimer’s disease. Tra-
ditionally, PET imaging using Aβ-specific radiotracers (such
as 18-florbetapir) is used to quantify brain Aβ plaque load.
However, PET imaging is expensive and exposes the subjects
to radiation. Moreover, PET is not available in majority of
the hospitals around the world. Thus, predicting this PET
biomarker from MRIs is significant for AD diagnosis. As MRI
and PET acquisition were usually not acquired in the same
visit by ADNI and subjects visits were generally 6-months
apart, we considered the amyloid status derived from the 18F-
AV45 PET acquired within 3 months from an MRI visit as the
‘ground truth’ of that visit. As suggested by prior longitudinal
studies [45]–[47], we used the standardized uptake value ratio
(SUVR) for each PET scan based on a composite reference
region consisting of cerebellum, brainstem/pons, and eroded
cortical white matter (described in ‘UC Berkeley - AV45 Anal-
ysis Methods’ which is available on ADNI [48]). Following
the definition in [49], [50], an SUVR above 0.79 was labelled
positive and otherwise the scan was labelled as negative.

Considering our method as a pre-training scheme that
provides a representation that can potentially benefit down-
stream supervised tasks, we pre-trained the encoder based
on our disentanglement approach on all subjects. Afterward,
we assessed the accuracy of the resulting representation with
respect to each of the two downstream tasks via five-fold

TABLE II
PROPERTIES OF PRE-TRAINING METHODS FOR LEARNING

REPRESENTATIONS FOR DOWNSTREAM CLASSIFICATION. ‘S’ DENOTES

SELF-SUPERVISED, AND ’W’ DENOTES WEAKLY-SUPERVISED.

Weakly/Self-
Supervised

Using
Longitudinal

Pair Disentanglement
AE [54] S 7 7

VAE [39] S 7 7
SimCLR [55] S X 7

LSSL [5] S X Brain age
LNE [28] S X Brain age

wMLP [51] W 7 7
C-VAE [56] W 7 7

wLSSL1 W X Brain age
wLSSL2 W X Brain age

Ours W X
Brain age

Disease Severity

cross-validation. For each run, one fold was used for testing,
while the remaining folds were utilized for training, among
which 10% subjects were held out for validation. The 5 folds
were split based on subjects so that all MRIs of a subject
were assigned to the same fold. For sMCI vs. pMCI classi-
fication, we tested on two types of input features: 1) a visit-
level prediction used z of each visit; and an MRI-pair-level
prediction concatenated z of the first visit with ∆z between
visits, denoted as z & ∆z. The prediction target was always the
sMCI vs. pMCI label of the subject. Using each feature type,
we trained the classifier in two settings. We first performed
the classification directly on the features (frozen) using a
multi-layer perceptron (MLP) [51] with two dense layers of
dimension 1024 and 64 with LeakyReLU activation [52]. In
the second setting, we fine-tuned the features by incorporating
the encoder F before the MLP classifier and trained the
entire model in an end-to-end manner. Classification accuracy
was measured by balanced accuracy (BACC) [53] accounting
for different number of training samples in each group. We
also conducted an ablation study to examine the impact of
omitting the two regularization terms (Eq. 4, 5) on the BACC.
Lastly, the cross-validation was repeated for PET amyloid
status classification. Since the status was defined per visit, the
prediction target was the status at the second visit when using
z & ∆z as input features.

We compared the BACC to models using the same ar-
chitecture with encoders pre-trained by other representation
learning methods. To the best of our knowledge, there ex-
ists no longitudinal approach that can disentangle aging and
disease effects within a latent space. We therefore compared
to unsupervised (AE [54], VAE [39]) and self-supervised
(SimCLR [55], LSSL [5], LNE [28]) methods. Specifically, we
adapted SimCLR to our longitudinal setting by treating two
MRIs of the same subject (with the same shift and rotation
augmentation) as a positive pair for self-supervised training
[55]. Next, we also implemented several weakly supervised
methods (see first column of Table II) for pre-training the
encoder. First, wMLP concatenated the encoder with an MLP
classifier [51] to predict the binary weak label, while a C-VAE
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(a) (b) (c) (d)

Fig. 4. (a) Distribution of aging speed ∆ϕa for control and diseased subjects; (b) Distribution of progression speed ∆ϕd; (c) Distribution of ∆ϕd

with respect to the three conditions; (d) Each dot represents the aging and progression speed between a pair of MRIs from adjacent visits. The
color of dots represents cohort assignment. In all sub-figures, black dashed lines denote zero speed. Note, we omitted from the axes their scale as
the absolute value of aging speed and progression speed has no practical meaning.

[56] learned the latent representation of each MRI conditioned
on its binary label. We also expanded the LSSL approach to
work with weak labels by implementing two variants: similar
to wMLP, wLSSL1 consisted of the encoder followed by a
classifier in order to estimate the weak binary label; wLSSL2
estimated two label-specific directions in the latent space by
using two cosine losses, one computed with respect to the
controls and the other with respect to the diseased cohort.
Table II summarizes the properties of all methods used in our
comparison.

IV. RESULTS

We now review the findings of the experiments in the order
they were described in the prior section.

A. Plotting Disentangled Values

As the proposed method performed disentanglement by
focusing on the differences within pairs of MRIs, we first
review our findings with respect to the aging speed ∆ϕa and
the progression speed ∆ϕd (Fig. 4) and then complement those
findings by analyzing age ϕa and disease severity ϕd (Fig. 6).

Fig. 4(a) shows no significant difference in aging speed
∆ϕa between the control (NC) and the cognitive impairment
(CI) cohort (p=0.25). This indicates the KL loss Lkl (Eq.
(4)) effectively extracted a common pattern of normal aging
across the two cohorts. That the normal aging was similar
across cohorts is further supported by Fig. 5(a), which shows
similar developmental patterns across cohorts. The pattern for
each cohort was created by subtracting the synthetic MRI (see
also Section II-D) at age 60 years (first column) from that
at different ages. Note, the estimated brain age significantly
correlated with the actual chronological age (p < 0.01,
Fig. 6(a)) so that the chronological ages were related to the
estimated brain ages ϕa based on a linear function that mapped
the range (i.e., max and min values) of brain ages to the one
of chronological ages.

Furthermore, normal controls had close to zero progression
speed (shown by the horizontal dashed line in Fig. 4(b)+(d))

indicating the efficacy of the regularization Lpen. However,
when investigating the progression speed of the three con-
ditions (Fig. 4(c)+(d)), sMCI had significantly smaller ∆ϕd
compared to pMCI and AD (p < 0.01). Beyond progression
speed, the disease severity of sMCI subjects was lower than
those with pMCI or AD (both with p < 0.01, Fig. 6(b)).
These findings are visually confirmed by the differences in
simulated MRIs of each cohort to that of the normal controls at
a specific age (Fig. 5(b)). While for all conditions we observed
enlarged ventricle and brain atrophy, those morphological
changes were least pronounced for sMCI. Furthermore, sMCI
converged with increasing age to the brain of normal controls,
while brains from pMCI and AD had visually distinct yet
less pronounced morphological changes compared to effects
at younger ages. These results agree with recent findings that
brain atrophy of early onset AD patients is distinctly different
to age-matched controls, but less so when comparing older
AD patients from older controls [57].

The progression speed estimated by our method also aligned
well with the actual speed of cognition decline, as larger
∆ϕd corresponded to faster ADAS-cog decline (light yellow
in Fig. 7(a)). The Pearson correlation (r=0.27, p < 0.01,
Fig. 7(b)) between the two variables was achieved solely
using T1 structural data without supervision on ADAS-cog.
Interestingly, the regression line (in red) almost goes through
the origin of that coordinate system indicating that when no
progression in disease severity was detected by our model then
this accurately reflected stability in the cognitive score. Beyond
progression speed, disease severity itself was correlated with
the ADAS-cog score (p < 0.001) (Fig.6(c)). Interestingly,
the slope of the fitted lines was larger in AD than pMCI,
which suggests the difference in ADAS-cog score between the
two cohorts was more pronounced than the difference in the
estimated disease severity. This is potentially due to the fact
that cognitive impairment is not only associated with structural
brain changes but also with functional ones [58]. Thus changes
cannot be solely explained by structural biomarkers [59] and
hence requires further multi-modal analysis.

In summary, all these findings suggest that the proposed
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method not only properly disentangled brain age from disease
severity (p>0.1 for Pearson’s correlation) but also was able to
learn the progression of cognitive impairment from the ordinal
information of subject-specific MRI pairs without knowledge
about ADAS-cog or the three conditions (sMCI, pMCI, and
AD).

B. sMCI vs. pMCI classification

According to Table III, the representations learned by the
proposed method achieved significantly more accurate predic-
tions (p < 0.05, DeLong’s test) than all baselines in 3 out of 4
scenarios. The one exception was using z and fine-tuning the
encoder, in which case LNE [28] achieved the highest accuracy
(69.6%) as it can explicitly model non-linear aging directions.
Another observation is that the accuracy of the proposed
method using z and ∆z (a.k.a., z & ∆z) with a frozen
encoder was more accurate (70.9%) than any implementation
just relying on z (including those with fine-tuned encoders).
This indicates the progression speed of cognitive impairment
was an important marker for distinguishing pMCI from sMCI.
This would also explain why cross-sectional methods were
generally outperformed by longitudinal ones as the latter
explicitly modeled the morphological change between time
points, which led to more accurate estimates of ∆z than
computed by cross-sectional models.

Compared with the model that directly classifies sMCI and
pMCI individuals (i.e., ‘No pretrain’), the proposed method
pre-trained the encoder by augmenting the data set with
the control and AD subjects. Unlike other unsupervised or
weakly-supervised pre-training schemes (i.e., wMLP, C-VAE,
wLSSL1 and wLSSL2), our model leveraged the weak label
(without knowing the condition) to explicitly disentangle the
disease factor from the aging factor, which is particularly
beneficial for modeling stages of severity where each stage
is represented by a limited number of training samples. This
statement is supported by excluding the AD cohort in pre-
training resulting in a significant drop in balanced accuracy
from 70.9 to 70.1 (p < 0.05, DeLong’s test) in the sMCI
vs. pMCI classification (based on z & ∆ z and a frozen
encoder). This conclusion is further supported by reported
accuracy score of 74.2% of our method that is higher than any
other published accuracy on sMCI vs. pMCI classification just
relying on structural MRI (Table IV).
Ablation study. As we have qualitatively shown the impor-
tance of Lkl (Eq. (4)) (ensures the homogeneity assumption
of having same distribution of aging speed) and Lpen (Eq.
5) (enforces the completeness assumption that normal aging
can fully explain the changes in MRI for the control cohort)
for disentanglement in Section IV-A, we now quantitatively
assess their impact on the BACC in the sMCI vs. pMCI
classification task. As shown in Table V, using all loss terms
during pre-training obtained the highest accuracy for three
settings compared to omitting either regularization term, while
omitting both terms achieved the worst performance. In the
scenario of using z as input features and fine-tuning the
encoder, omitting Lpen resulted in slightly higher accuracy
(68.5%) than including it (68.4%), which was much lower than

TABLE III
AVERAGE BALANCED ACCURACY FOR SMCI VS. PMCI CLASSIFICATION

WITH AND W/O FINE-TUNING THE ENCODER USING REPRESENTATION z
AND REPRESENTATION z & ∆z. THE BEST RESULT IN EACH COLUMN

IS IN BOLD WHILE THE SECOND BEST IS UNDERLINED. ‘∗’ DENOTES

WEAKLY-SUPERVISED, AND ‘†’ DENOTES LONGITUDINAL.

Methods
sMCI vs. pMCI

z z & ∆z
Frozen Fine-tune Frozen Fine-tune

No pretrain - 64.2 - 69.3
AE [54] 60.9 65.3 62.6 69.5

VAE [39] 60.8 63.4 61.3 63.8
wMLP ∗ [51] 60.3 66.2 62.1 69.6
C-VAE ∗ [56] 60.6 64.2 61.6 64.1

SimCLR † [55] 61.4 66.7 63.3 69.5
LSSL † [5] 59.3 68.2 69.4 71.2
LNE † [28] 59.8 69.6 70.6 73.4
wLSSL1 ∗† 61.4 68.6 70.2 72.1
wLSSL2 ∗† 60.8 68.4 70.6 72.8

Ours ∗† 62.2 68.4 70.9 74.2

TABLE IV
COMPARISON OF THE PROPOSED METHOD WITH OTHER TRADITIONAL

METHODS AND DEEP-LEARNING-BASED METHODS IN SMCI VS. PMCI
CLASSIFICATION ON ADNI DATASET. THE PROPOSED METHOD

ACHIEVED BEST BACC AMONG ALL METHODS THAT WERE SOLELY

BASED ON STRUCTURAL MRI.

Method Modalities sMCI vs. pMCI BACC
Cross-sectional

Liu et al. [60] MRI 465/205 62.2
Zu et al. [61] MRI, PET 56/43 69.0
Suk et al. [62] MRI 128/76 63.8
Lin et al. [63] MRI 100/164 73.0

Huang et al. [64] MRI, PET 441/326 76.9
Zhou et al. [65] MRI, PET, SNP 205/157 74.3
Zhou et al. [66] MRI, PET 114/71 78.3

Longitudinal
Gray et al. [67] MRI, PET 64/53 62.7

Cui et al. [4] MRI 236/167 71.7
Platero et al. [68] MRI, tests 215/206 77.1
Ouyang et al. [28] MRI 193/135 73.4

Ours MRI 193/135 74.2

the overall highest accuracy of our implementation (74.2%).
This demonstrates the necessity of each proposed compo-
nent in learning informative representations stratifying disease
severity across conditions.

C. Amyloid status classification

As shown in Table VI, the proposed method yielded the best
accuracy of classifying amyloid status in all four scenarios,
suggesting the superiority of the representations learned by
our method. By disentangling the disease progression from
normal aging, representation z captured more information
about the status of AD, which was correlated with amyloid
status. Unlike for sMCI vs. pMCI classification, including ∆z
in the classifier did not greatly boost accuracy, which indicates
that the amyloid status might be less related to the progression
speed but rather the severity of cognitive impairment.

V. DISCUSSION
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Fig. 5. (a) The intensity difference between the simulated brain at a categorical age and the one at age 60 years (first column). (b) For each
condition (i.e., row), the corresponding column shows the difference between its simulated brain and that of the normal control cohort (first row) at
the corresponding categorical age.

(a) (b) (c)

Fig. 6. (a) Correlation between the estimated brain age and the actual chronological age. Each blue line connects adjacent visits. The red line
corresponds to the group-level relation fitted by a robust linear mixed effect model. (b) Distribution of disease severity by condition. (c) Correlation
between disease severity and the ADAS-cog score colored according to condition. The thick straight line associated with each condition represents
the average trajectory fitted by a robust linear mixed effect model.

(a) (b)

r = 0.27

Fig. 7. In (a), each dot represents the aging and progression speed between a pair of MRIs from adjacent visits. The color of each dot indicates
the speed of the ADAS-cog score (purple = slow , yellow = fast). (b) illustrates the correlation between estimated progression speed and ADAS-Cog
speed. In all sub-figures, black dashed lines correspond to zero. Note, we omitted from the axes their scale as the absolute value of aging speed
and progression speed has no practical meaning.
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TABLE V
ABLATION STUDY ON SMCI VS. PMCI CLASSIFICATION. THE BEST

RESULT IN EACH COLUMN IS IN BOLD.

Methods
sMCI vs. pMCI

z z & ∆z
Frozen Fine-tune Frozen Fine-tune

No Lkl, Lpen 59.2 68.2 69.1 71.4
No Lkl 59.8 68.0 69.8 72.6

No Lpen 59.4 68.5 69.3 71.4
All terms 62.2 68.4 70.9 74.2

TABLE VI
AVERAGE BALANCED ACCURACY FOR AMYLOID POSITIVE VS. NEGATIVE

CLASSIFICATION WITH AND W/O FINE-TUNING THE ENCODER USING

REPRESENTATION Z AND REPRESENTATION z & ∆z. THE BEST RESULT

IN EACH COLUMN IS IN BOLD WHILE THE SECOND BEST IS UNDERLINED.
‘∗’ DENOTES WEAKLY-SUPERVISED, AND ‘†’ DENOTES LONGITUDINAL.

Methods Amyloid positive vs. negative
z z & ∆z

Frozen Fine-tune Frozen Fine-tune
No pretrain - 78.2 - 78.4

AE [54] 60.2 77.7 60.6 78.2
VAE [39] 60.4 77.9 60.3 78.2

wMLP ∗ [51] 60.7 78.1 61.2 79.0
C-VAE ∗ [56] 60.1 77.2 60.4 78.0

SimCLR † [55] 60.4 78.6 61.0 77.9
LSSL † [5] 60.8 79.0 61.5 79.0
LNE † [28] 60.6 78.8 61.6 79.4
wLSSL1 ∗† 61.0 79.4 61.6 78.9
wLSSL2 ∗† 60.6 78.7 61.3 78.6

Ours 61.2 79.4 62.2 80.1

The advantage of the proposed method is that it explicitly
disentangles the disease progression from normal aging. Thus,
our model provides a unique way to understand the disease
status (severity and progression) by directly learning from the
longitudinal MRIs rather than using human-defined metrics
related to the disease. More specifically, our proposed method
captures a disease via ϕd representing disease severity and
∆ϕd encoding the progression speed of a disease. Moreover, it
yields an intuitive way for interpreting and visualizing the rep-
resentation, i.e., projecting the high dimensional representation
into 2D-space supported by the aging and disease directions,
as shown in Fig. 5(d) and Fig. 7(a).

Beyond those advantages, the accuracy of our method could
be negatively impacted by the completeness assumption, i.e.,
that any longitudinal changes are only caused by aging and the
disease (see Section II). In practice, longitudinal changes are
also caused by other time-dependent factors, such as diseases
whose risk increases with age [69] and AD comorbidities [70]–
[73]. Those factors are only implicitly accounted for as they
are either modeled as part of aging (if they are independent of
AD), disease severity (if they related to AD), or captured by
the remaining vectors (those that are orthogonal to both aging
and disease severity).

Second, confounding effects of time-invariant factors (such
as sex) were not considered during training. We studied the
effect of sex via a post-hoc analysis, which revealed that
the male cohort had a significant higher brain age ϕa and

disease severity ϕd (both p < 0.01, two-sample t-test) than
the female one. These findings align with the demographics of
the ADNI data set as the male cohort was significantly older
and contained a significantly higher percentage of cognitive
impaired subjects than the female cohort (both p < 0.01).
However, the sex difference was not significant for aging speed
∆ϕa (p=0.1) and progression speed ∆ϕd (p=0.07).

Lastly, in our experiments, the proposed method was pre-
trained on the whole dataset, but it has the potential to
be embedded into a cross-validation setting. To prove this
concept, we also applied the pre-trained method on a separate
hold-out dataset consisting of 200 MRI pairs of 200 subjects
(50 subjects for each cohort) from the ADNI2/3 data set (i.e.,
no overlapping with the pre-trained dataset). The cohorts in
the hold-out set were age matched to the pre-trained dataset
(p > 0.05, t-test). As on pre-trained data set (Fig. 4 (b)(c)),
the progression speed measured on the hold-out set of pMCI
or AD subjects was significantly faster than NC or sMCI
(p < 0.01 for all four comparisons including NC vs. pMCI,
NC vs. AD, sMCI vs. pMCI, and sMCI vs. AD). Furthermore,
the BACC for the sMCI vs. pMCI classification for the frozen
encoder with respect to z was 61.4 %, which is insignificantly
different to the 62.2 % reported in Table III (p > 0.1, Fisher’s
exact test). Insignificantly different was also the difference in
BACC with respect to the frozen encoder applied to z&∆z, for
which we recorded 70.3% (versus 70.9 %, p > 0.1, Fisher’s
exact test) on the hold-out dataset. Moreover, the model with
the fine-tuned encoder also had a balanced accuracy of 68.2
% (vs. 68.4 %) using z and 73.5% (vs. 74.2 %) using z&∆z
(both have p > 0.1, Fisher’s exact test). In other words, our
derived encoder can generalize to unseen data.

VI. CONCLUSION

In this work, we proposed a representation learning frame-
work based on weakly-supervised learning that takes advan-
tage of the repeated MRI scans acquired by longitudinal
studies to explicitly disentangle normal brain aging and disease
progression. When applied to analyze the longitudinal T1-
weighted MRIs from ADNI, the proposed method not only
accurately quantified the severity level and the dynamic pro-
gression speed of cognitive impairment associated with sMCI,
pMCI, and AD, but also visualized for each condition the ef-
fects of the disease on brain morphometry. When used as a pre-
training strategy, our method resulted in latent representations
with superior accuracy in differentiating sMCI from pMCI and
positive from negative amyloid status compared with the ones
learned by other unsupervised and self-supervised methods.
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[21] R. Couronné, P. Vernhet, and S. Durrleman, “Longitudinal self-
supervision to disentangle inter-patient variability from disease progres-
sion,” in International Conference on Medical Image Computing and
Computer-Assisted Intervention, Lecture Notes in Computer Science,
vol. 12902, pp. 231–241, 2021.

[22] I. Higgins et al., “β-VAE: Learning basic visual concepts with a
constrained variational framework,” in International Conference on
Learning Representations, 2016.

[23] R. T. Chen, X. Li, R. Grosse, and D. Duvenaud, “Isolating sources
of disentanglement in VAEs,” in Proceedings of the 32nd International
Conference on Neural Information Processing Systems, pp. 2615–2625,
2018.

[24] H. Kim and A. Mnih, “Disentangling by factorising,” in International
Conference on Machine Learning, pp. 2649–2658, 2018.

[25] W.-N. Hsu, Y. Zhang, and J. Glass, “Unsupervised learning of dis-
entangled and interpretable representations from sequential data,” in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, pp. 1876–1887, 2017.

[26] W. Grathwohl and A. Wilson, “Disentangling space and time in
video with hierarchical variational auto-encoders,” arXiv preprint
arXiv:1612.04440, 2016.

[27] Y. Li and S. Mandt, “Disentangled sequential autoencoder,” arXiv
preprint arXiv:1803.02991, 2018.

[28] J. Ouyang et al., “Self-supervised longitudinal neighbourhood embed-
ding,” in International Conference on Medical Image Computing and

Computer-Assisted Intervention, Lecture Notes in Computer Science,
vol. 12902, pp. 80–89, 2021.

[29] M. Toepper, “Dissociating normal aging from Alzheimer’s disease: A
view from cognitive neuroscience,” Journal of Alzheimer’s Disease,
vol. 57, no. 2, pp. 331–352, 2017.

[30] R. Sivera, H. Delingette, M. Lorenzi, X. Pennec, and N. Ayache,
“A model of brain morphological changes related to aging and
Alzheimer’s disease from cross-sectional assessments,” NeuroImage,
vol. 198, pp. 255–270, 2019.

[31] D. K. Johnson, M. Storandt, J. C. Morris, and J. E. Galvin, “Longitudinal
study of the transition from healthy aging to Alzheimer disease,”
Archives of Neurology, vol. 66, no. 10, pp. 1254–1259, 2009.

[32] S. G. Mueller et al., “Ways toward an early diagnosis in Alzheimer’s
disease: the Alzheimer’s Disease Neuroimaging Initiative (ADNI),”
Alzheimer’s & Dementia, vol. 1, no. 1, pp. 55–66, 2005.

[33] R. C. Petersen et al., “Alzheimer’s Disease Neuroimaging Initiative
(ADNI): clinical characterization,” Neurology, vol. 74, no. 3, pp. 201–
209, 2010.

[34] T. Ohnishi, H. Matsuda, T. Tabira, T. Asada, and M. Uno, “Changes in
brain morphology in Alzheimer disease and normal aging: is Alzheimer
disease an exaggerated aging process?,” American Journal of Neurora-
diology, vol. 22, no. 9, pp. 1680–1685, 2001.

[35] M. Lorenzi, X. Pennec, G. B. Frisoni, and N. Ayache, “Disentangling
normal aging from Alzheimer’s disease in structural magnetic resonance
images,” Neurobiology of Aging, vol. 36, pp. S42–S52, 2015.

[36] C. R. Jack Jr et al., “The Alzheimer’s Disease Neuroimaging Initiative
(ADNI): MRI methods,” Journal of Magnetic Resonance Imaging,
vol. 27, no. 4, pp. 685–691, 2008.

[37] S. G. Mueller et al., “The Alzheimer’s Disease Neuroimaging Initiative,”
Neuroimaging Clinics, vol. 15, no. 4, pp. 869–877, 2005.

[38] H. Li, M. Habes, D. A. Wolk, and Y. Fan, “A deep learning model for
early prediction of Alzheimer’s disease dementia based on hippocampal
magnetic resonance imaging data,” Alzheimer’s & Dementia, vol. 15,
no. 8, pp. 1059–1070, 2019.

[39] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv
preprint arXiv:1312.6114, 2013.

[40] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum
learning,” in Proceedings of the 26th Annual International Conference
on Machine Learning, pp. 41–48, 2009.

[41] A. Pentina, V. Sharmanska, and C. H. Lampert, “Curriculum learning
of multiple tasks,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5492–5500, 2015.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[43] J. K. Kueper, M. Speechley, and M. Montero-Odasso, “The Alzheimer’s
disease assessment scale–cognitive subscale (ADAS-Cog): modifications
and responsiveness in pre-dementia populations. a narrative review,”
Journal of Alzheimer’s Disease, vol. 63, no. 2, pp. 423–444, 2018.

[44] D. Tosun et al., “Amyloid status imputed from a multimodal classifier
including structural MRI distinguishes progressors from nonprogressors
in a mild Alzheimer’s disease clinical trial cohort,” Alzheimer’s &
Dementia, vol. 12, no. 9, pp. 977–986, 2016.

[45] S. M. Landau et al., “Measurement of longitudinal β-amyloid change
with 18F-florbetapir PET and standardized uptake value ratios,” Journal
of Nuclear Medicine, vol. 56, no. 4, pp. 567–574, 2015.

[46] M. Brendel et al., “Improved longitudinal 18F-AV45 amyloid PET by
white matter reference and VOI-based partial volume effect correction,”
NeuroImage, vol. 108, pp. 450–459, 2015.

[47] K. Chen et al., “Improved power for characterizing longitudinal amyloid-
β PET changes and evaluating amyloid-modifying treatments with a
cerebral white matter reference region,” Journal of Nuclear Medicine,
vol. 56, no. 4, pp. 560–566, 2015.

[48] “Alzheimer’s Disease Neuroimaging Initiative.” http://adni.
loni.usc.edu/.

[49] “Florbetapir processing methods.” https://adni.bitbucket.
io/reference/docs/UCBERKELEYAV45/ADNI_AV45_
Methods_JagustLab_06.25.15.pdf.

[50] A. D. Joshi et al., “Performance characteristics of amyloid PET with
18F-florbetapir in patients with Alzheimer’s disease and cognitively
normal subjects,” Journal of Nuclear Medicine, vol. 53, no. 3, pp. 378–
384, 2012.

[51] S. Haykin, “A comprehensive foundation,” Neural Networks, vol. 2,
no. 2004, p. 41, 2004.

[52] A. L. Maas et al., “Rectifier nonlinearities improve neural network
acoustic models,” in International Conference on Machine Learning,
vol. 30, pp. 3–8, 2013.

Authorized licensed use limited to: University of Southern California. Downloaded on May 10,2022 at 23:00:27 UTC from IEEE Xplore.  Restrictions apply. 

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
https://adni.bitbucket.io/reference/docs/UCBERKELEYAV45/ADNI_AV45_Methods_JagustLab_06.25.15.pdf
https://adni.bitbucket.io/reference/docs/UCBERKELEYAV45/ADNI_AV45_Methods_JagustLab_06.25.15.pdf
https://adni.bitbucket.io/reference/docs/UCBERKELEYAV45/ADNI_AV45_Methods_JagustLab_06.25.15.pdf


0278-0062 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMI.2022.3166131, IEEE
Transactions on Medical Imaging

12 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2020

[53] K. H. Brodersen, C. S. Ong, K. E. Stephan, and J. M. Buhmann, “The
balanced accuracy and its posterior distribution,” in 20th International
Conference on Pattern Recognition, pp. 3121–3124, 2010.

[54] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of
data with neural networks,” Science, vol. 313, no. 5786, pp. 504–507,
2006.

[55] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in International
Conference on Machine Learning, pp. 1597–1607, 2020.

[56] K. Sohn, H. Lee, and X. Yan, “Learning structured output represen-
tation using deep conditional generative models,” Advances in Neural
Information Processing Systems, vol. 28, pp. 3483–3491, 2015.

[57] H. F. Rhodius-Meester et al., “MRI visual ratings of brain atrophy
and white matter hyperintensities across the spectrum of cognitive
decline are differently affected by age and diagnosis,” Frontiers in Aging
Neuroscience, vol. 9, pp. 117–128, 2017.

[58] M. Pihlajamaki, A. M. Jauhiainen, and H. Soininen, “Structural and
functional MRI in mild cognitive impairment,” Current Alzheimer Re-
search, vol. 6, no. 2, pp. 179–185, 2009.

[59] K. Oh, Y.-C. Chung, K. Kim, W.-S. Kim, and I.-S. Oh, “Classification
and visualization of Alzheimer’s disease using volumetric convolutional
neural network and transfer learning,” Scientific Reports, vol. 9, 2019.

[60] M. Liu, J. Zhang, E. Adeli, and D. Shen, “Landmark-based deep multi-
instance learning for brain disease diagnosis,” Medical Image Analysis,
vol. 43, pp. 157–168, 2018.

[61] C. Zu et al., “Label-aligned multi-task feature learning for multimodal
classification of Alzheimer’s disease and mild cognitive impairment,”
Brain Imaging and Behavior, vol. 10, no. 4, pp. 1148–1159, 2016.

[62] H.-I. Suk, S.-W. Lee, and D. Shen, “Hierarchical feature representation
and multimodal fusion with deep learning for AD/MCI diagnosis,”
NeuroImage, vol. 101, pp. 569–582, 2014.

[63] W. Lin et al., “Convolutional neural networks-based MRI image analysis
for the Alzheimer’s disease prediction from mild cognitive impairment,”
Frontiers in Neuroscience, vol. 12, pp. 777–789, 2018.

[64] Y. Huang, J. Xu, Y. Zhou, T. Tong, and X. Zhuang, “Diagnosis of
Alzheimer’s disease via multi-modality 3D convolutional neural net-
work,” Frontiers in Neuroscience, vol. 13, pp. 509–520, 2019.

[65] T. Zhou, M. Liu, K.-H. Thung, and D. Shen, “Latent representation
learning for Alzheimer’s disease diagnosis with incomplete multi-
modality neuroimaging and genetic data,” IEEE Transactions on Medical
Imaging, vol. 38, no. 10, pp. 2411–2422, 2019.

[66] T. Zhou et al., “Deep multi-modal latent representation learning for
automated dementia diagnosis,” in International Conference on Medical
Image Computing and Computer-Assisted Intervention, Lecture Notes in
Computer Science, vol. 11767, pp. 629–638, 2019.

[67] K. R. Gray, R. Wolz, R. A. Heckemann, P. Aljabar, A. Hammers,
and D. Rueckert, “Multi-region analysis of longitudinal FDG-PET for
the classification of Alzheimer’s disease,” NeuroImage, vol. 60, no. 1,
pp. 221–229, 2012.

[68] C. Platero and M. C. Tobar, “Predicting Alzheimer’s conversion in
mild cognitive impairment patients using longitudinal neuroimaging and
clinical markers,” Brain Imaging and Behavior, pp. 1–11, 2020.

[69] T. Niccoli and L. Partridge, “Ageing as a risk factor for disease,” Current
Biology, vol. 22, no. 17, pp. R741–R752, 2012.

[70] R. Matej, A. Tesar, and R. Rusina, “Alzheimer’s disease and other
neurodegenerative dementias in comorbidity: a clinical and neuropatho-
logical overview,” Clinical Biochemistry, vol. 73, pp. 26–31, 2019.

[71] A. Duthie, D. Chew, and R. Soiza, “Non-psychiatric comorbidity as-
sociated with Alzheimer’s disease,” QJM: An International Journal of
Medicine, vol. 104, no. 11, pp. 913–920, 2011.

[72] J. A. Santiago and J. A. Potashkin, “The impact of disease comorbidities
in Alzheimer’s disease,” Frontiers in Aging Neuroscience, vol. 13,
pp. 38–50, 2021.

[73] R. Moretti, P. Torre, R. M. Antonello, G. Cazzato, and A. Bava, “De-
pression and Alzheimer’s disease: symptom or comorbidity?,” American
Journal of Alzheimer’s Disease & Other Dementias, vol. 17, no. 6,
pp. 338–344, 2002.

Authorized licensed use limited to: University of Southern California. Downloaded on May 10,2022 at 23:00:27 UTC from IEEE Xplore.  Restrictions apply. 


